
Apache	Hive	

CMSC	491	
Hadoop-Based	Distributed	Compu<ng	

Spring	2016	
Adam	Shook	

	

What	Is	Hive?	

•  Developed	by	Facebook	and	a	top-level	Apache	project	
•  A	data	warehousing	infrastructure	based	on	Hadoop	
•  Immediately	makes	data	on	a	cluster	available	to	non-
Java	programmers	via	SQL	like	queries	

•  Built	on	HiveQL		(HQL),	a	SQL-like	query	language	
•  Interprets	HiveQL	and	generates	MapReduce	jobs	that	
run	on	the	cluster	

•  Enables	easy	data	summariza<on,	ad-hoc	repor<ng	
and	querying,	and	analysis	of	large	volumes	of	data	

What	Hive	Is	Not	

•  Hive,	like	Hadoop,	is	designed	for	batch	
processing	of	large	datasets	

•  Not	an	OLTP	or	real-<me	system	
•  Latency	and	throughput	are	both	high	
compared	to	a	tradi<onal	RDBMS	
– Even	when	dealing	with	rela<vely	small	data		
(<100	MB)	

Data	Hierarchy	

•  Hive	is	organised	hierarchically	into:	
– Databases:	namespaces	that	separate	tables	and	
other	objects	

–  Tables:	homogeneous	units	of	data	with	the	same	
schema	
•  Analogous	to	tables	in	an	RDBMS	

–  Par<<ons:	determine	how	the	data	is	stored	
•  Allow	efficient	access	to	subsets	of	the	data	

–  Buckets/clusters	
•  For	subsampling	within	a	par<<on	
•  Join	op<miza<on	

HiveQL	
•  HiveQL	/	HQL	provides	the	basic	SQL-like	
opera<ons:	
–  Select	columns	using	SELECT	
–  Filter	rows	using	WHERE	
–  JOIN	between	tables	
–  Evaluate	aggregates	using	GROUP	BY	
–  Store	query	results	into	another	table	
– Download	results	to	a	local	directory		(i.e.,	export	
from	HDFS)	

– Manage	tables	and	queries	with	CREATE,	DROP,	and	
ALTER	

Primi<ve	Data	Types	

Type	 Comments	

TINYINT,	SMALLINT,	INT,	BIGINT	 1,	2,	4	and	8-byte	integers	

BOOLEAN	 TRUE/FALSE	

FLOAT,	DOUBLE	 Single	and	double	precision	real	numbers	

STRING	 Character	string	

TIMESTAMP	 Unix-epoch	offset	or	date<me	string	

DECIMAL	 Arbitrary-precision	decimal	

BINARY	 Opaque;	ignore	these	bytes	

Complex	Data	Types	

Type	 Comments	

STRUCT	 A	collec<on	of	elements	
If	S	is	of	type	STRUCT	{a	INT,	b	INT}:	
		S.a	returns	element	a	

MAP	 Key-value	tuple	
If	M	is	a	map	from	'group'	to	GID:	
		M['group']	returns	value	of	GID	

ARRAY	 Indexed	list	
If	A	is	an	array	of	elements	['a','b','c']:	
		A[0]	returns	'a'	

HiveQL	Limita<ons	

•  HQL	only	supports	equi-joins,	outer	joins,	lel	
semi-joins	

•  Because	it	is	only	a	shell	for	mapreduce,	complex	
queries	can	be	hard	to	op<mise	

•  Missing	large	parts	of	full	SQL	specifica<on:	
– HAVING	clause	in	SELECT	
–  Correlated	sub-queries	
–  Sub-queries	outside	FROM	clauses	
– Updatable	or	materialized	views	
–  Stored	procedures	

Hive	Metastore	
•  Stores	Hive	metadata	
•  Default	metastore	database	uses	Apache	Derby	
•  Various	configura<ons:	
–  Embedded		(in-process	metastore,	in-process	
database)	
•  Mainly	for	unit	tests	

–  Local		(in-process	metastore,	out-of-process	database)	
•  Each	Hive	client	connects	to	the	metastore	directly	

–  Remote		(out-of-process	metastore,	out-of-process	
database)	
•  Each	Hive	client	connects	to	a	metastore	server,	which	
connects	to	the	metadata	database	itself	

Hive	Warehouse	

•  Hive	tables	are	stored	in	the	Hive	
“warehouse”	
– Default	HDFS	loca<on:	/user/hive/warehouse	

•  Tables	are	stored	as	sub-directories	in	the	
warehouse	directory	

•  Par<<ons	are	subdirectories	of	tables	
•  External	tables	are	supported	in	Hive	
•  The	actual	data	is	stored	in	flat	files	

Hive	Schemas	

•  Hive	is	schema-on-read	
– Schema	is	only	enforced	when	the	data	is	read		(at	
query	<me)	

– Allows	greater	flexibility:	same	data	can	be	read	
using	mul<ple	schemas	

•  Contrast	with	an	RDBMS,	which	is	schema-on-
write	
– Schema	is	enforced	when	the	data	is	loaded	
– Speeds	up	queries	at	the	expense	of	load	<mes	

Create	Table	Syntax	
CREATE TABLE table_name

 (col1 data_type,

col2 data_type,

col3 data_type,

col4 datatype)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ','

STORED AS format_type;

Simple	Table	
CREATE TABLE page_view

 (viewTime INT,

userid BIGINT,

page_url STRING,

referrer_url STRING,

ip STRING COMMENT 'IP Address of the User')

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE;

More	Complex	Table	
CREATE TABLE employees (

 (name STRING,

salary FLOAT,

subordinates ARRAY<STRING>,

deductions MAP<STRING, FLOAT>,

address STRUCT<street:STRING,

city:STRING,

state:STRING,

zip:INT>)

ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE;

External	Table	
CREATE EXTERNAL TABLE page_view_stg

 (viewTime INT,

userid BIGINT,

page_url STRING,

referrer_url STRING,

ip STRING COMMENT 'IP Address of the User')
ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE

LOCATION '/user/staging/page_view';

More	About	Tables	

•  CREATE	TABLE	
–  LOAD:	file	moved	into	Hive’s	data	warehouse	
directory	

– DROP:	both	metadata	and	data	deleted	
•  CREATE	EXTERNAL	TABLE	
–  LOAD:	no	files	moved	
– DROP:	only	metadata	deleted	
– Use	this	when	sharing	with	other	Hadoop	
applica<ons,	or	when	you	want	to	use	mul<ple	
schemas	on	the	same	data	

Par<<oning	

•  Can	make	some	queries	faster	
•  Divide	data	based	on	par<<on	column	
•  Use	PARTITION	BY	clause	when	crea<ng	table	
•  Use	PARTITION	clause	when	loading	data	
•  SHOW	PARTITIONS	will	show	a	table’s	
par<<ons	

Bucke<ng	

•  Can	speed	up	queries	that	involve	sampling	
the	data	
– Sampling	works	without	bucke<ng,	but	Hive	has	
to	scan	the	en<re	dataset	

•  Use	CLUSTERED	BY	when	crea<ng	table	
– For	sorted	buckets,	add	SORTED	BY	

•  To	query	a	sample	of	your	data,	use	
TABLESAMPLE	

Browsing	Tables	And	Par<<ons	
Command	 Comments	

SHOW TABLES; Show	all	the	tables	in	the	database	
SHOW TABLES 'page.*'; Show	tables	matching	the	

specifica<on		(uses	regex	syntax)	

SHOW PARTITIONS page_view; Show	the	par<<ons	of	the	page_view	
table	

DESCRIBE page_view; List	columns	of	the	table	
DESCRIBE EXTENDED page_view; More	informa<on	on	columns		(useful	

only	for	debugging)	

DESCRIBE page_view
PARTITION (ds='2008-10-31');

List	informa<on	about	a	par<<on	

Loading	Data	

•  Use	LOAD	DATA	to	load	data	from	a	file	or	
directory	

– Will	read	from	HDFS	unless	LOCAL	keyword	is	
specified	

– Will	append	data	unless	OVERWRITE	specified	
–  PARTITION	required	if	des<na<on	table	is	par<<oned	

LOAD DATA LOCAL INPATH '/tmp/pv_2008-06-8_us.txt'

OVERWRITE INTO TABLE page_view

PARTITION (date='2008-06-08', country='US')

Inser<ng	Data	

•  Use	INSERT	to	load	data	from	a	Hive	query	

– Will	append	data	unless	OVERWRITE	specified	
– PARTITION	required	if	des<na<on	table	is	
par<<oned	
	
FROM page_view_stg pvs
INSERT OVERWRITE TABLE page_view
PARTITION (dt='2008-06-08', country='US')
SELECT pvs.viewTime, pvs.userid,

pvs.page_url, pvs.referrer_url
WHERE pvs.country = 'US';

Inser<ng	Data	

•  Normally	only	one	par<<on	can	be	inserted	into	
with	a	single	INSERT	

•  A	mul<-insert	lets	you	insert	into	mul<ple	
par<<ons	
	
FROM page_view_stg pvs

INSERT OVERWRITE TABLE page_view

PARTITION (dt='2008-06-08', country='US‘)

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url WHERE pvs.country = 'US'

INSERT OVERWRITE TABLE page_view

PARTITION (dt='2008-06-08', country='CA')

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url WHERE pvs.country = 'CA'

INSERT OVERWRITE TABLE page_view

PARTITION (dt='2008-06-08', country='UK')

SELECT pvs.viewTime, pvs.userid, pvs.page_url, pvs.referrer_url WHERE pvs.country = 'UK';

Inser<ng	Data	During	Table	Crea<on	

•  Use	AS	SELECT	in	the	CREATE	TABLE	
statement	to	populate	a	table	as	it	is	created	

	

CREATE TABLE page_view AS

SELECT pvs.viewTime, pvs.userid, pvs.page_url,
pvs.referrer_url

FROM page_view_stg pvs

WHERE pvs.country = 'US';

Loading	And	Inser<ng	Data:	Summary	

Use	this	 For	this	purpose	

LOAD Load	data	from	a	file	or	directory	
INSERT Load	data	from	a	query	

•  One	par<<on	at	a	<me	
•  Use	mul<ple	INSERTs	to	insert	into	

mul<ple	par<<ons	in	the	one	query	

CREATE TABLE AS (CTAS) Insert	data	while	crea<ng	a	table	

Add/modify	external	file	 Load	new	data	into	external	table	

Sample	Select	Clauses	

•  Select	from	a	single	table	
	SELECT	*	
	 	FROM	sales	
	 	WHERE	amount	>	10	AND	
	 	 	 	 	region	=	"US";	

•  Select	from	a	par<<oned	table	
	SELECT	page_views.*	

FROM	page_views	
WHERE	page_views.date	>=	'2008-03-01'	AND		

page_views.date	<=	'2008-03-31'	

	

Rela<onal	Operators	

•  ALL	and	DISTINCT	
–  Specify	whether	duplicate	rows	should	be	returned	
– ALL	is	the	default		(all	matching	rows	are	returned)	
– DISTINCT	removes	duplicate	rows	from	the	result	set	

•  WHERE	
–  Filters	by	expression	
– Does	not	support	IN,	EXISTS	or	sub-queries	in	the	
WHERE	clause	

•  LIMIT	
–  Indicates	the	number	of	rows	to	be	returned		

Rela<onal	Operators	

•  GROUP	BY	
– Group	data	by	column	values	
– Select	statement	can	only	include	columns	
included	in	the		
GROUP	BY	clause	

•  ORDER	BY	/	SORT	BY	
– ORDER	BY	performs	total	ordering	

•  Slow,	poor	performance	
– SORT	BY	performs	par<al	ordering	

•  Sorts	output	from	each	reducer	

Advanced	Hive	Opera<ons	

•  JOIN	
–  If	only	one	column	in	each	table	is	used	in	the	join,	then	
only	one	MapReduce	job	will	run	
•  This	results	in	1	MapReduce	job:	

SELECT * FROM a JOIN b ON a.key = b.key JOIN c ON b.key = c.key

•  This	results	in	2	MapReduce	jobs:	
SELECT * FROM a JOIN b ON a.key = b.key JOIN c ON b.key2 = c.key

–  If	mul<ple	tables	are	joined,	put	the	biggest	table	last	and	
the	reducer	will	stream	the	last	table,	buffer	the	others	

–  Use	lel	semi-joins	to	take	the	place	of	IN/EXISTS		
SELECT a.key, a.val FROM a LEFT SEMI JOIN b on a.key = b.key;

Advanced	Hive	Opera<ons	
•  JOIN	

–  Do	not	specify	join	condi<ons	in	the	WHERE	clause	
•  Hive	does	not	know	how	to	op<mise	such	queries	
•  Will	compute	a	full	Cartesian	product	before	filtering	it	

•  Join	Example	

SELECT
 a.ymd, a.price_close, b.price_close
FROM stocks a
JOIN stocks b ON a.ymd = b.ymd
WHERE a.symbol = 'AAPL' AND
 b.symbol = 'IBM' AND
 a.ymd > '2010-01-01';

Hive	S<nger	

•  MPP-style	execu<on	of	Hive	queries	
•  Available	since	Hive	0.13	
•  No	MapReduce	
•  We	will	talk	about	this	more	when	we	get	to	
SQL	on	Hadoop	

References	

•  hvp://hive.apache.org	
	

