-

| " Apache Hive

CMSC 491
Hadoop-Based Distributed Computing
Spring 2016
Adam Shook

What Is Hive?

Developed by Facebook and a top-level Apache project
A data warehousing infrastructure based on Hadoop

Immediately makes data on a cluster available to non-
Java programmers via SQL like queries

Built on HiveQL (HQL), a SQL-like query language

Interprets HiveQL and generates MapReduce jobs that
run on the cluster

Enables easy data summarization, ad-hoc reporting
and querying, and analysis of large volumes of data

What Hive Is Not

* Hive, like Hadoop, is designed for batch
processing of large datasets

* Not an OLTP or real-time system

* Latency and throughput are both high
compared to a traditional RDBMS

— Even when dealing with relatively small data
(<100 MB)

Data Hierarchy

* Hive is organised hierarchically into:

— Databases: namespaces that separate tables and
other objects

— Tables: homogeneous units of data with the same
schema
* Analogous to tables in an RDBMS

— Partitions: determine how the data is stored
* Allow efficient access to subsets of the data

— Buckets/clusters
* For subsampling within a partition
* Join optimization

HiveQL

* HiveQL / HQL provides the basic SQL-like
operations:
— Select columns using SELECT
— Filter rows using WHERE
— JOIN between tables
— Evaluate aggregates using GROUP BY
— Store query results into another table

— Download results to a local directory (i.e., export
from HDFS)

— Manage tables and queries with CREATE, DROP, and
ALTER

Primitive Data Types

TINYINT, SMALLINT, INT, BIGINT 1, 2, 4 and 8-byte integers

BOOLEAN TRUE/FALSE

FLOAT, DOUBLE Single and double precision real numbers
STRING Character string

TIMESTAMP Unix-epoch offset or datetime string
DECIMAL Arbitrary-precision decimal

BINARY Opaque; ignore these bytes

Complex Data Types

STRUCT A collection of elements
If S is of type STRUCT {a INT, b INT}:

S.a returns element a

MAP Key-value tuple
If M is a map from 'group' to GID:
M['group'] returns value of GID

ARRAY Indexed list
If A'is an array of elements ['a’,'b’,'c']:
A[O] returns 'a’

HiveQL Limitations

 HQL only supports equi-joins, outer joins, left
semi-joins

* Because it is only a shell for mapreduce, complex
gueries can be hard to optimise

* Missing large parts of full SQL specification:
— HAVING clause in SELECT
— Correlated sub-queries
— Sub-queries outside FROM clauses
— Updatable or materialized views
— Stored procedures

Hive Metastore

e Stores Hive metadata
* Default metastore database uses Apache Derby

e Various configurations:

— Embedded (in-process metastore, in-process

database)
* Mainly for unit tests

— Local (in-process metastore, out-of-process database)
e Each Hive client connects to the metastore directly
— Remote (out-of-process metastore, out-of-process
database)

e Each Hive client connects to a metastore server, which
connects to the metadata database itself

Hive Warehouse

Hive tables are stored in the Hive
“Wwarehouse”

— Default HDFS location: /user/hive/warehouse

Tables are stored as sub-directories in the
warehouse directory

Partitions are subdirectories of tables
External tables are supported in Hive
The actual data is stored in flat files

Hive Schemas

e Hive is schema-on-read

— Schema is only enforced when the data is read (at
guery time)

— Allows greater flexibility: same data can be read
using multiple schemas

* Contrast with an RDBMS, which is schema-on-
write
— Schema is enforced when the data is loaded
— Speeds up queries at the expense of load times

Create Table Syntax

CREATE TABLE table name

(coll data type,

col2 data type,

col3 data type,

cold datatype)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',
STORED AS format type;

Simple Table

CREATE TABLE page view
(viewTime INT,
userid BIGINT,
page url STRING,
referrer url STRING,
ip STRING COMMENT 'IP Address of the User')
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

More Complex Table

CREATE TABLE employees (
(name STRING,
salary FLOAT,
subordinates ARRAY<STRING>,
deductions MAP<STRING, FLOAT>,
address STRUCT<street:STRING,
city:STRING,
state:STRING,
Z1ip: INT>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFEFILE;

External Table

CREATE EXTERNAL TABLE page_view_stg
(viewTime INT,
userid BIGINT,
page url STRING,
referrer url STRING,

ip STRING COMMENT 'IP Address of the User')
ROW FORMAT DELIMITED

FIELDS TERMINATED BY '"\t'
STORED AS TEXTEFILE

LOCATION '/user/staging/page view';

More About Tables

* CREATE TABLE

— LOAD: file moved into Hive’s data warehouse
directory

— DROP: both metadata and data deleted

* CREATE EXTERNAL TABLE
— LOAD: no files moved
— DROP: only metadata deleted

— Use this when sharing with other Hadoop
applications, or when you want to use multiple
schemas on the same data

Partitioning

Can make some queries faster

Divide data based on partition column

Use PARTITION BY clause when creating table
Use PARTITION clause when loading data

SHOW PARTITIONS will show a table’s
partitions

Bucketing

e Can speed up queries that involve sampling
the data

— Sampling works without bucketing, but Hive has
to scan the entire dataset

 Use CLUSTERED BY when creating table
— For sorted buckets, add SORTED BY

* To query a sample of your data, use
TABLESAMPLE

Browsing Tables And Partitions

SHOW TABLES; Show all the tables in the database

SHOW TABLES 'page.*'; Show tables matching the
specification (uses regex syntax)

SHOW PARTITIONS page view; Show the partitions of the page view
table

DESCRIBE page view; List columns of the table

DESCRIBE EXTENDED page view; More information on columns (useful

only for debugging)

DESCRIBE page view List information about a partition
PARTITION (ds='2008-10-31");

Loading Data

e Use LOAD DATA to load data from a file or
directory

— Will read from HDFS unless LOCAL keyword is
specified

— Will append data unless OVERWRITE specified
— PARTITION required if destination table is partitioned

LOAD DATA LOCAL INPATH ' /tmp/pv_Z 008-0 6—8_us .Ext!
OVERWRITE INTO TABLE page_view
PARTITION (date='2008-06-08"', country='US")

Inserting Data

* Use INSERT to load data from a Hive query
— Will append data unless OVERWRITE specified

— PARTITION required if destination table is
partitioned

FROM page view stg pvs
INSERT OVERWRITE TABLE page view
PARTITION (dt='2008-06-08"', country='US")

SELECT pvs.viewTime, pvs.userid,
pvs.page url, pvs.referrer url

WHERE pvs.country = 'US';

Inserting Data

* Normally only one partition can be inserted into
with a single INSERT

A multi-insert lets you insert into multiple
partitions

FROM page view stg pvs
INSERT OVERWRITE TABLE page view

PARTITION (dt='2008-06-08"', country='US"')

SELECT pvs.viewTime, pvs.userid, pvs.page url, pvs.referrer url WHERE pvs.country = 'US'
INSERT OVERWRITE TABLE page view

PARTITION (dt='2008-06-08', country='CA')

SELECT pvs.viewTime, pvs.userid, pvs.page url, pvs.referrer url WHERE pvs.country = 'CA'

INSERT OVERWRITE TABLE page view
PARTITION (dt='2008-06-08"', country='UK')

SELECT pvs.viewTime, pvs.userid, pvs.page url, pvs.referrer url WHERE pvs.country = 'UK';

Inserting Data During Table Creation

e Use AS SELECT in the CREATE TABLE
statement to populate a table as it is created

CREATE TABLE page view AS

SELECT pvs.viewTime, pvs.userid, pvs.page url,
pvs.referrer url

FROM page view stg pvs
WHERE pvs.country = 'US';

Loading And Inserting Data: Summary

For this purpose

LOAD Load data from a file or directory

INSERT Load data from a query
* One partition at a time
* Use multiple INSERTSs to insert into
multiple partitions in the one query

CREATE TABLE AS (CTAS) Insert data while creating a table

Add/modify external file Load new data into external table

Sample Select Clauses

* Select from a single table

SELECT *
FROM sales
WHERE amount > 10 AND

region = "US";
* Select from a partitioned table
SELECT page views.*
FROM page views
WHERE page views.date >= '2008-03-01' AND
page views.date <= '2008-03-31"

Relational Operators

* ALL and DISTINCT

— Specify whether duplicate rows should be returned
— ALL is the default (all matching rows are returned)
— DISTINCT removes duplicate rows from the result set

* WHERE

— Filters by expression

— Does not support IN, EXISTS or sub-queries in the
WHERE clause

 LIMIT

— Indicates the number of rows to be returned

Relational Operators

* GROUP BY

— Group data by column values

— Select statement can only include columns
included in the
GROUP BY clause

* ORDER BY / SORT BY
— ORDER BY performs total ordering

* Slow, poor performance

— SORT BY performs partial ordering
e Sorts output from each reducer

Advanced Hive Operations

* JOIN

— If only one column in each table is used in the join, then
only one MapReduce job will run

* This results in 1 MapReduce job:
SELECT * FROM a JOIN b ON a.key = b.key JOIN c ON b.key = c.key

* This results in 2 MapReduce jobs:
SELECT * FROM a JOIN b ON a.key = b.key JOIN c ON b.key2 = c.key

— If multiple tables are joined, put the biggest table last and
the reducer will stream the last table, buffer the others

— Use left semi-joins to take the place of IN/EXISTS

SELECT a.key, a.val FROM a LEFT SEMI JOIN b on a.key = b.key;

Advanced Hive Operations

* JOIN

— Do not specify join conditions in the WHERE clause
* Hive does not know how to optimise such queries
* Will compute a full Cartesian product before filtering it

e Join Example

SELECT
a.ymd, a.price close, b.price close
FROM stocks a
JOIN stocks b ON a.ymd = b.ymd
WHERE a.symbol = '"AAPL' AND
b.symbol = 'IBM' AND
a.ymd > '2010-01-01";

Hive Stinger

MPP-style execution of Hive queries
Available since Hive 0.13
No MapReduce

We will talk about this more when we get to
SQL on Hadoop

References

e http://hive.apache.org

