Apache Storm

Introduction

>

Apache Storm is a real-time fault-tolerant and distributed Stream Processing
Engine.

Open Sourced September 19th 2011
Main languages-Clojure and the JAVA.

Some of the Characteristics of storm are Fast, Scalable, Fault-tolerant,
Reliable and Easy to operate.

Some of the organizations that currently use Storm are: Yahoo!, Groupon, The
Weather Channel, Alibaba, Baidu, and Rocket Fuel.

https://en.wikipedia.org/wiki/Clojure

Why Storm?

» Dealing with Huge amount of data

» Streaming data processing

» Use cases:

real-time trading analytics
malfunction detection

social network

smart advertisement placement

log processing and metrics analytics.

Internal Architecture

Master Node » Nimbus-Master Node
. » Assigns tasks
Nimbus _ ,
» Monitors failures

» Zookeeper

» Cluster state of Nimbus
and Supervisor

4)
maintained in zookeeper
Zookeeper Zookeeper Zookeeper ,
» Supervisor
\ /

» Communicates with

Nimbus through
Zookeeper about
: topologies and available

resources.
Supervisor | | Supervisor | | Supervisor Supervisor » Workers

» Listens for assighed work
and executes the

[Workers][Workers][Workers][Workers] application.

Storm- Data Processing

» Streams of tuples flowing through topologies
» Vertices represent computation and edges represent the data flow

» Vertices divided into
» Spouts -read tuples from external sources.

» Bolts - encapsulate the application logic.

0 T - - - - - - - -
e e e e e e e e e =

Interaction between Storm Internals Components

Submits Advertises
topology Topology
Match
making
Processes Spawns
Tasks Workers

Events - Heartbeat protocol (every 15 seconds), synchronize supervisor
event(every 10 seconds) and synchronize process event(every 3 seconds).

Stream Grouping

bolt A

Shuffle bolt B

=

bolt A

O

bolt A

Fields ,tB

All

bolt A

field X

field Y

O
O

Global

Processing Semantics
» Atleast once:

Each tuple that is input to the topology will be processed atleast once.
» Atmost Once:

Each tuple is processed once or dropped in case of failure.

States of workers

Supervisor periodically checks the state of workers for managing the worker
processes.

» Timed out
» Not started
» Disallowed
» Valid

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("“sentencs-spout”, new SentenceSpout());
Topology Example |
builder.setBolt("split-bolt", new SplitSentenceBolt())
public class WordCountTopology { .shuffleGrouping("sentences-spout");
public static void main(String[] args) throws Exception {
builder.setBolt("count-bolt", new WordCountBolt())

//...Topology construction... .fieldsGrouping("“split-bolt", new Fields("word"));
Config config = new Config();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY NAME, config, builder.createTopology(]);

waitForSeconds(10);
cluster.killTopology(TOPOLOGY NAME);
| cluster.shutdown();

Topology Example-contd

public class SplitSentenceBolt extends BaseRichBolt{ public class WordCountBolt extends BaseRichBolt{
private QutputCollector collector; private OutputCollector collector,
\ private HashMap<String, Longy counts=null;

/ public void declareQutputFields(OutputFieldseclaner declarer) {

declarer.declare(ne Fields("word")); public void declaneOutputFields(OutputFieldsDeclarer declarer) {
} /[this bolt does not enit anything
}
public void prepare(Map config, TopologyContext context,OutputCollector collector) {
this. collector = collector; publc void prepare(Map config, TopologyContext context,OutputCollector collector) {
\}] this.collector = collector;

/ T this. counts = new HashMapeString, Long)();
public void execute(Tuple tuple) { pestring, Long);

String sentence = tuple.getStringByField("sentence"); }
String[] words = sentence.split(" *);
for(String word : words){

this. collector. enit (new Values(word));
}

\)}}

public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
[[...increnents count..

Guaranteed Processing

- ' » Storm provides an APl to guarantee that a
P tuple emitted by a spout is fully processed by
,/ the topology (at-least-once semantic).
- .. » With guaranteed processing, each bolt in th
tree can either acknowledge or fail a tuple

Spout Side Bolts Side
public void nextTuple() { public void execute(Tuple tuple) { '
//?repare the nex’F sentence S to emit | Assign p unique |D to any /... processing. .. - AnChormg (thrgugh
| ’;gllf.collector.emlt(new Values(S), msgID) ;s emitted tuple thiS.CUllECtOf‘.emit(tUple, new VHIUES(WUPd)); Overloaded emlt method)
/ [acknowledgment

ublic void ack(Object msgID :
p / /handle sﬁcciss - this. collector.ack(tuple);

. Implement the ack and fail «— Ackorfailthe tuple

) |nethodsforhandﬁng [for, if something goes wrong, fail

S : this. collector.fail(tuple);
public void fail(Object msgID) { successes and failures

//handle failure

... }
)

Deployment model of the cluster

» The secondary Nimbus
instance starts working when
the primary one temporary
fails.

Nimbus i

@ » Each spout deals with a
specific data stream which

Zookeeper || Zookeeper || Zookeeper allows to produce tuples
from streams with different

@ @ protocols and data formats.
» The bolts from current layer
are involved on the filtering,

aggregating and analysis
stages

Supervisor || Supervisor || Supervisor || Supervisor

Storm Use Cases

» Twitter's infrastructure, including database systems
(Cassandra, Memcached, etc), the messaging
infrastructure, Mesos, and the monitoring/alerting
systems

» Yahoo! is developing a next generation platform that
enables the convergence of big-data and low-latency
processing.

» Groupon Storm helps us analyze, clean, normalize,
and resolve large amounts of non-unique data points
with low latency and high throughput.

» Alibaba uses storm to process the application log and
the data change in database to supply real time stats
for data apps.

[

spIder

YzHoO!

%U/Cﬁ%ﬁ? ’ I KLOUT

ianéhimps E
S o OOVALA

Storm Use Cases-contd
| “Prevent’UseCases | _____ “Optimize” Use Cases |

Financial Services

Securities fraud Order routing

Operational risks & compliance violations Pricing
Telecom
Security breaches Bandwidth allocation
Network outages Customer service
Retail
Shrinkage Offers
Stock outs Pricing

Manufacturing
Preventative maintenance Supply chain optimization

Quality assurance Reduced plant downtime

Transportation

Driver monitoring Routes

Predictive maintenance Pricing

Web

Application failures Personalized content

Operational issues

Comparison big data open source tools

» A Storm cluster is superficially similar to a Hadoop cluster. Whereas on Hadoop you
run “MapReduce jobs”, on Storm you run “topologies”. “Jobs” and “topologies”
themselves are very different — one key difference is that a MapReduce job
eventually finishes, whereas a topology processes messages forever (or until you Kkill
it).Storm can do real time processing of streams of tuple’s (incoming data) while
Hadoop do batch processing with MapReduce job.

» Storm behave like true streaming processing systems with lower latencies, While
Spark is able to handle higher throughput while having somewhat higher latencies.

» Storm is better choice for real time data processing

» REFERENCE -Benchmarking Streaming Computation Engines: Storm, Flink and Spark
Streaming, By Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas
Graves, Mark Holderbaugh Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry
Peng and Paul Poulosky Yahoo Inc., Presented at 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops

Storm vs Hadoop

Storm
Real-time stream processing
Stateless

Master/Slave architecture with
ZooKeeper based coordination. The
master node is called as nimbus and
slaves are supervisors.

A Storm streaming process can access
tens of thousands messages per second
on cluster.

Storm topology runs until shutdown by
the user or an unexpected
unrecoverable failure.

Hadoop
Batch processing
Stateful

Master-slave architecture with/without
ZooKeeper based coordination. Master
node is job tracker and slave node is
task tracker.

Hadoop Distributed File System (HDFS)
uses MapReduce framework to process
vast amount of data that takes minutes
or hours.

MapReduce jobs are executed in a
sequential order and completed
eventually.

Both are distributed and fault-tolerant

If nimbus / supervisor dies, restarting
makes it continue from where it
stopped, hence nothing gets affected.

If the JobTracker dies, all the running
jobs are lost.

pLsazaas

Master Node

Nimbus

e Eee e

Supervisor

Zookeeper
Service

(map)

"map

Storm- Pros and Cons

Pros

» Fault tolerance: High fault tolerance

» Latency: very less

» Processing Model: Real-time stream processing model

» Programming language dependency: any programming language
» Reliable: each tuple of data should be processed at least once
» Scalability: high scalability

Cons

» Use of native scheduler and resource management feature (Nimbus) in
particular, become bottlenecks.

» Difficulties with debugging given the way the threads and data flows are
split.

Time [ms) After Window Closed

Benchmarking Streaming Computation Engines:

Storm, Flink and Spark Streaming

Percentile Comparison of Last Window Update Times

~ storm 0.11.0 {No Ack) 150000/5
— fiink 150000/s
~ spark 150000/s

99th Percentile Latency (ms)

Storm vs Flink vs Spark

#-® Storm 10.0
oo Storm 11.0
@ Storm 11.0 NO ACK

[|@ e Fink

-9 Spark

References

» Apache Storm Based on Topology for Real-Time Processing of Streaming Data from
Social Networks, By Anatoliy Batyuk, Volodymyr Voityshyn, Presented at IEEE First
International Conference on Data Stream Mining & Processing
http://ieeexplore.ieee.org/document/7583573/?reload=true

» Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming, By
Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark
Holderbaugh Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng and Paul
Poulosky Yahoo Inc., Presented at 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-
computation-engines-at

» INTRODUCTION TO APACHE STORM, by Tiziano De Matteis
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258

» Using apache storm for big data, S Surshanov*, [ITU, Kazakhstan
http: //www.cmnt.lv/upload-files/ns_24brt003_CMNT1903-802.pdf

» Storm @Twitter, Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel*, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake
Donham, Nikunj Bhagat, Sailesh Mittal, Dmitriy Ryaboy, Twitter, Inc., *University of
Wisconsin - Madison
https://cs.brown.edu/courses/csci2270/archives/2015/papers/ss-storm. pdf

http://ieeexplore.ieee.org/document/7583573/?reload=true
http://ieeexplore.ieee.org/document/7583573/?reload=true
http://ieeexplore.ieee.org/document/7583573/?reload=true
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.slideshare.net/tizianodem/introduction-to-apache-storm-55467258
http://www.cmnt.lv/upload-files/ns_24brt003_CMNT1903-802.pdf
http://www.cmnt.lv/upload-files/ns_24brt003_CMNT1903-802.pdf
http://www.cmnt.lv/upload-files/ns_24brt003_CMNT1903-802.pdf
http://www.cmnt.lv/upload-files/ns_24brt003_CMNT1903-802.pdf
http://www.cmnt.lv/upload-files/ns_24brt003_CMNT1903-802.pdf
https://cs.brown.edu/courses/csci2270/archives/2015/papers/ss-storm.pdf
https://cs.brown.edu/courses/csci2270/archives/2015/papers/ss-storm.pdf
https://cs.brown.edu/courses/csci2270/archives/2015/papers/ss-storm.pdf

