
Spark Streaming

Large-scale near-real-time stream

processing

Tathagata Das (TD)
UC Berkeley

UC BERKELEY

What is Spark Streaming?
 Framework for large scale stream processing

- Scales to 100s of nodes

- Can achieve second scale latencies

- Integrates with Spark’s batch and interactive processing

- Provides a simple batch-like API for implementing complex algorithm

- Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

Motivation

 Many important applications must process large streams of live data and provide
results in near-real-time

- Social network trends

- Website statistics

- Intrustion detection systems

- etc.

 Require large clusters to handle workloads

 Require latencies of few seconds

Need for a framework …

… for building such complex stream processing applications

But what are the requirements

from such a framework?

Requirements

 Scalable to large clusters

 Second-scale latencies

 Simple programming model

Case study: Conviva, Inc.
 Real-time monitoring of online video metadata

- HBO, ESPN, ABC, SyFy, …

 Two processing stacks

Custom-built distributed stream processing system
• 1000s complex metrics on millions of video sessions
• Requires many dozens of nodes for processing

Hadoop backend for offline analysis
• Generating daily and monthly reports
• Similar computation as the streaming system

Custom-built distributed stream processing system
• 1000s complex metrics on millions of videos sessions
• Requires many dozens of nodes for processing

Hadoop backend for offline analysis
• Generating daily and monthly reports
• Similar computation as the streaming system

Case study: XYZ, Inc.
 Any company who wants to process live streaming data has this problem

 Twice the effort to implement any new function

 Twice the number of bugs to solve

 Twice the headache

 Two processing stacks

Requirements

 Scalable to large clusters

 Second-scale latencies

 Simple programming model

 Integrated with batch & interactive processing

Stateful Stream Processing
 Traditional streaming systems have a event-

driven record-at-a-time processing model

- Each node has mutable state

- For each record, update state & send new
records

 State is lost if node dies!

 Making stateful stream processing be fault-
tolerant is challenging

mutable state

node 1

node 3

input
records

node 2

input
records

9

Existing Streaming Systems

 Storm

-Replays record if not processed by a node

-Processes each record at least once

-May update mutable state twice!

-Mutable state can be lost due to failure!

 Trident – Use transactions to update state

-Processes each record exactly once

-Per state transaction updates slow

10

Requirements

 Scalable to large clusters

 Second-scale latencies

 Simple programming model

 Integrated with batch & interactive processing

 Efficient fault-tolerance in stateful computations

Spark Streaming

12

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

13

Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

 Chop up the live stream into batches of X seconds

 Spark treats each batch of data as RDDs and
processes them using RDD operations

 Finally, the processed results of the RDD operations
are returned in batches

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

14

Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

 Batch sizes as low as ½ second, latency ~ 1 second

 Potential for combining batch processing and
streaming processing in the same system

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1 batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStream new DStream

new RDDs created for
every batch

batch @ t+1 batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1 batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch saved
to HDFS

Java Example

Scala

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })

hashTags.saveAsHadoopFiles("hdfs://...")
Function object to define the transformation

Fault-tolerance

 RDDs are remember the sequence of
operations that created it from the
original fault-tolerant input data

 Batches of input data are replicated in
memory of multiple worker nodes,
therefore fault-tolerant

 Data lost due to worker failure, can be
recomputed from input data

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

Key concepts

 DStream – sequence of RDDs representing a stream of data

- Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

 Transformations – modify data from on DStream to another

- Standard RDD operations – map, countByValue, reduce, join, …

- Stateful operations – window, countByValueAndWindow, …

 Output Operations – send data to external entity

- saveAsHadoopFiles – saves to HDFS

- foreach – do anything with each batch of results

Example 2 – Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

flatMap

map

reduceByKey

flatMap

map

reduceByKey

…

flatMap

map

reduceByKey

batch @ t+1 batch @ t batch @ t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ...]

Example 3 – Count the hashtags over last 10 mins

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window
operation

window length sliding interval

tagCounts

Example 3 – Counting the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue

count over all
the data in the

window

?

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

hashTags

t-1 t t+1 t+2 t+3

+

+
–

countByValue
add the counts
from the new
batch in the

window
subtract the
counts from
batch before
the window

tagCounts

Smart window-based reduce

 Technique to incrementally compute count generalizes to many reduce operations

- Need a function to “inverse reduce” (“subtract” for counting)

 Could have implemented counting as:

 hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), …)

25

Demo

Fault-tolerant Stateful Processing

All intermediate data are RDDs, hence can be recomputed if lost

hashTags

t-1 t t+1 t+2 t+3

tagCounts

Fault-tolerant Stateful Processing

 State data not lost even if a worker node dies

- Does not change the value of your result

 Exactly once semantics to all transformations

- No double counting!

28

Other Interesting Operations

 Maintaining arbitrary state, track sessions

- Maintain per-user mood as state, and update it with his/her tweets

 tweets.updateStateByKey(tweet => updateMood(tweet))

 Do arbitrary Spark RDD computation within DStream

- Join incoming tweets with a spam file to filter out bad tweets

 tweets.transform(tweetsRDD => {

 tweetsRDD.join(spamHDFSFile).filter(...)

})

Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latency

- Tested with 100 streams of data on 100 EC2 instances with 4 cores each

0

0,5

1

1,5

2

2,5

3

3,5

0 50 100

C
lu

st
e

r
Th

ro
u

gh
p

u
t

(G
B

/s
)

Nodes in Cluster

WordCount

1 sec

2 sec
0

1

2

3

4

5

6

7

0 50 100

C
lu

st
e

r
Th

h
ro

u
gh

p
u

t
(G

B
/s

)

Nodes in Cluster

Grep

1 sec

2 sec

30

Comparison with Storm and S4

Higher throughput than Storm

 Spark Streaming: 670k records/second/node

 Storm: 115k records/second/node

 Apache S4: 7.5k records/second/node

0

10

20

30

100 1000Th
ro

u
gh

p
u

t
p

e
r

n
o

d
e

(M

B
/s

)

Record Size (bytes)

WordCount

Spark

Storm

0

40

80

120

100 1000Th
ro

u
gh

p
u

t
p

e
r

n
o

d
e

(M

B
/s

)

Record Size (bytes)

Grep

Spark

Storm

31

Fast Fault Recovery

Recovers from faults/stragglers within 1 sec

32

Real Applications: Conviva

Real-time monitoring of video metadata

33

0

0,5

1

1,5

2

2,5

3

3,5

4

0 20 40 60 80

A
ct

iv
e

 s
e

ss
io

n
s

(m
ill

io
n

s)

Nodes in Cluster

• Achieved 1-2 second latency

• Millions of video sessions processed

• Scales linearly with cluster size

Real Applications: Mobile Millennium Project

Traffic transit time estimation using online
machine learning on GPS observations

34

0

400

800

1200

1600

2000

0 20 40 60 80

G
P

S
 o

b
s

e
rv

a
ti

o
n

s
 p

e
r

s
e

c
o

n
d

Nodes in Cluster

• Markov chain Monte Carlo simulations on GPS
observations

• Very CPU intensive, requires dozens of
machines for useful computation

• Scales linearly with cluster size

Vision - one stack to rule them all

Ad-hoc
Queries

Batch
Processing

Stream
Processing Spark

+
Shark

+
Spark

Streaming

Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Spark program on Twitter log file

val tweets = sc.hadoopFile("hdfs://...")

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFile("hdfs://...")

Vision - one stack to rule them all

 Explore data interactively using Spark
Shell / PySpark to identify problems

 Use same code in Spark stand-alone
programs to identify problems in
production logs

 Use similar code in Spark Streaming to
identify problems in live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = file.map(...)
...

object ProcessProductionData {
 def main(args: Array[String]) {
 val sc = new SparkContext(...)
 val file = sc.hadoopFile(“productionLogs”)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

object ProcessLiveStream {
 def main(args: Array[String]) {
 val sc = new StreamingContext(...)
 val stream = sc.kafkaStream(...)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

Vision - one stack to rule them all

 Explore data interactively using Spark
Shell / PySpark to identify problems

 Use same code in Spark stand-alone
programs to identify problems in
production logs

 Use similar code in Spark Streaming to
identify problems in live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = file.map(...)
...

object ProcessProductionData {
 def main(args: Array[String]) {
 val sc = new SparkContext(...)
 val file = sc.hadoopFile(“productionLogs”)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

object ProcessLiveStream {
 def main(args: Array[String]) {
 val sc = new StreamingContext(...)
 val stream = sc.kafkaStream(...)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

Ad-hoc
Queries

Batch
Processing

Stream
Processing Spark

+
Shark

+
Spark

Streaming

Alpha Release with Spark 0.7

 Integrated with Spark 0.7

- Import spark.streaming to get all the functionality

 Both Java and Scala API

 Give it a spin!

- Run locally or in a cluster

 Try it out in the hands-on tutorial later today

Summary

 Stream processing framework that is ...

- Scalable to large clusters

- Achieves second-scale latencies

- Has simple programming model

- Integrates with batch & interactive workloads

- Ensures efficient fault-tolerance in stateful computations

 For more information, checkout our paper: http://tinyurl.com/dstreams

http://tinyurl.com/dstreams

