
Spark Streaming

Large-scale near-real-time stream

processing

Tathagata Das (TD)
UC Berkeley

UC BERKELEY

What is Spark Streaming?
 Framework for large scale stream processing

- Scales to 100s of nodes

- Can achieve second scale latencies

- Integrates with Spark’s batch and interactive processing

- Provides a simple batch-like API for implementing complex algorithm

- Can absorb live data streams from Kafka, Flume, ZeroMQ, etc.

Motivation

 Many important applications must process large streams of live data and provide
results in near-real-time

- Social network trends

- Website statistics

- Intrustion detection systems

- etc.

 Require large clusters to handle workloads

 Require latencies of few seconds

Need for a framework …

… for building such complex stream processing applications

But what are the requirements

from such a framework?

Requirements

 Scalable to large clusters

 Second-scale latencies

 Simple programming model

Case study: Conviva, Inc.
 Real-time monitoring of online video metadata

- HBO, ESPN, ABC, SyFy, …

 Two processing stacks

Custom-built distributed stream processing system
• 1000s complex metrics on millions of video sessions
• Requires many dozens of nodes for processing

Hadoop backend for offline analysis
• Generating daily and monthly reports
• Similar computation as the streaming system

Custom-built distributed stream processing system
• 1000s complex metrics on millions of videos sessions
• Requires many dozens of nodes for processing

Hadoop backend for offline analysis
• Generating daily and monthly reports
• Similar computation as the streaming system

Case study: XYZ, Inc.
 Any company who wants to process live streaming data has this problem

 Twice the effort to implement any new function

 Twice the number of bugs to solve

 Twice the headache

 Two processing stacks

Requirements

 Scalable to large clusters

 Second-scale latencies

 Simple programming model

 Integrated with batch & interactive processing

Stateful Stream Processing
 Traditional streaming systems have a event-

driven record-at-a-time processing model

- Each node has mutable state

- For each record, update state & send new
records

 State is lost if node dies!

 Making stateful stream processing be fault-
tolerant is challenging

mutable state

node 1

node 3

input
records

node 2

input
records

9

Existing Streaming Systems

 Storm

-Replays record if not processed by a node

-Processes each record at least once

-May update mutable state twice!

-Mutable state can be lost due to failure!

 Trident – Use transactions to update state

-Processes each record exactly once

-Per state transaction updates slow

10

Requirements

 Scalable to large clusters

 Second-scale latencies

 Simple programming model

 Integrated with batch & interactive processing

 Efficient fault-tolerance in stateful computations

Spark Streaming

12

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

13

Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

 Chop up the live stream into batches of X seconds

 Spark treats each batch of data as RDDs and
processes them using RDD operations

 Finally, the processed results of the RDD operations
are returned in batches

Discretized Stream Processing

Run a streaming computation as a series of very
small, deterministic batch jobs

14

Spark

Spark
Streaming

batches of X seconds

live data stream

processed results

 Batch sizes as low as ½ second, latency ~ 1 second

 Potential for combining batch processing and
streaming processing in the same system

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

DStream: a sequence of RDD representing a stream of data

batch @ t+1 batch @ t batch @ t+2

tweets DStream

stored in memory as an RDD
(immutable, distributed)

Twitter Streaming API

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

flatMap flatMap flatMap

…

transformation: modify data in one Dstream to create another DStream new DStream

new RDDs created for
every batch

batch @ t+1 batch @ t batch @ t+2

tweets DStream

hashTags Dstream
[#cat, #dog, …]

Example 1 – Get hashtags from Twitter

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

output operation: to push data to external storage

flatMap flatMap flatMap

save save save

batch @ t+1 batch @ t batch @ t+2

tweets DStream

hashTags DStream

every batch saved
to HDFS

Java Example

Scala

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Java

JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })

hashTags.saveAsHadoopFiles("hdfs://...")
Function object to define the transformation

Fault-tolerance

 RDDs are remember the sequence of
operations that created it from the
original fault-tolerant input data

 Batches of input data are replicated in
memory of multiple worker nodes,
therefore fault-tolerant

 Data lost due to worker failure, can be
recomputed from input data

input data
replicated
in memory

flatMap

lost partitions
recomputed on
other workers

tweets
RDD

hashTags
RDD

Key concepts

 DStream – sequence of RDDs representing a stream of data

- Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets

 Transformations – modify data from on DStream to another

- Standard RDD operations – map, countByValue, reduce, join, …

- Stateful operations – window, countByValueAndWindow, …

 Output Operations – send data to external entity

- saveAsHadoopFiles – saves to HDFS

- foreach – do anything with each batch of results

Example 2 – Count the hashtags

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.countByValue()

flatMap

map

reduceByKey

flatMap

map

reduceByKey

…

flatMap

map

reduceByKey

batch @ t+1 batch @ t batch @ t+2

hashTags

tweets

tagCounts
[(#cat, 10), (#dog, 25), ...]

Example 3 – Count the hashtags over last 10 mins

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

sliding window
operation

window length sliding interval

tagCounts

Example 3 – Counting the hashtags over last 10 mins

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue()

hashTags

t-1 t t+1 t+2 t+3

sliding window

countByValue

count over all
the data in the

window

?

Smart window-based countByValue

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1))

hashTags

t-1 t t+1 t+2 t+3

+

+
–

countByValue
add the counts
from the new
batch in the

window
subtract the
counts from
batch before
the window

tagCounts

Smart window-based reduce

 Technique to incrementally compute count generalizes to many reduce operations

- Need a function to “inverse reduce” (“subtract” for counting)

 Could have implemented counting as:

 hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), …)

25

Demo

Fault-tolerant Stateful Processing

All intermediate data are RDDs, hence can be recomputed if lost

hashTags

t-1 t t+1 t+2 t+3

tagCounts

Fault-tolerant Stateful Processing

 State data not lost even if a worker node dies

- Does not change the value of your result

 Exactly once semantics to all transformations

- No double counting!

28

Other Interesting Operations

 Maintaining arbitrary state, track sessions

- Maintain per-user mood as state, and update it with his/her tweets

 tweets.updateStateByKey(tweet => updateMood(tweet))

 Do arbitrary Spark RDD computation within DStream

- Join incoming tweets with a spam file to filter out bad tweets

 tweets.transform(tweetsRDD => {

 tweetsRDD.join(spamHDFSFile).filter(...)

})

Performance

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latency

- Tested with 100 streams of data on 100 EC2 instances with 4 cores each

0

0,5

1

1,5

2

2,5

3

3,5

0 50 100

C
lu

st
e

r
Th

ro
u

gh
p

u
t

(G
B

/s
)

Nodes in Cluster

WordCount

1 sec

2 sec
0

1

2

3

4

5

6

7

0 50 100

C
lu

st
e

r
Th

h
ro

u
gh

p
u

t
(G

B
/s

)

Nodes in Cluster

Grep

1 sec

2 sec

30

Comparison with Storm and S4

Higher throughput than Storm

 Spark Streaming: 670k records/second/node

 Storm: 115k records/second/node

 Apache S4: 7.5k records/second/node

0

10

20

30

100 1000Th
ro

u
gh

p
u

t
p

e
r

n
o

d
e

(M

B
/s

)

Record Size (bytes)

WordCount

Spark

Storm

0

40

80

120

100 1000Th
ro

u
gh

p
u

t
p

e
r

n
o

d
e

(M

B
/s

)

Record Size (bytes)

Grep

Spark

Storm

31

Fast Fault Recovery

Recovers from faults/stragglers within 1 sec

32

Real Applications: Conviva

Real-time monitoring of video metadata

33

0

0,5

1

1,5

2

2,5

3

3,5

4

0 20 40 60 80

A
ct

iv
e

 s
e

ss
io

n
s

(m
ill

io
n

s)

Nodes in Cluster

• Achieved 1-2 second latency

• Millions of video sessions processed

• Scales linearly with cluster size

Real Applications: Mobile Millennium Project

Traffic transit time estimation using online
machine learning on GPS observations

34

0

400

800

1200

1600

2000

0 20 40 60 80

G
P

S
 o

b
s

e
rv

a
ti

o
n

s
 p

e
r

s
e

c
o

n
d

Nodes in Cluster

• Markov chain Monte Carlo simulations on GPS
observations

• Very CPU intensive, requires dozens of
machines for useful computation

• Scales linearly with cluster size

Vision - one stack to rule them all

Ad-hoc
Queries

Batch
Processing

Stream
Processing Spark

+
Shark

+
Spark

Streaming

Spark program vs Spark Streaming program

Spark Streaming program on Twitter stream

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>)

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFiles("hdfs://...")

Spark program on Twitter log file

val tweets = sc.hadoopFile("hdfs://...")

val hashTags = tweets.flatMap (status => getTags(status))

hashTags.saveAsHadoopFile("hdfs://...")

Vision - one stack to rule them all

 Explore data interactively using Spark
Shell / PySpark to identify problems

 Use same code in Spark stand-alone
programs to identify problems in
production logs

 Use similar code in Spark Streaming to
identify problems in live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = file.map(...)
...

object ProcessProductionData {
 def main(args: Array[String]) {
 val sc = new SparkContext(...)
 val file = sc.hadoopFile(“productionLogs”)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

object ProcessLiveStream {
 def main(args: Array[String]) {
 val sc = new StreamingContext(...)
 val stream = sc.kafkaStream(...)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

Vision - one stack to rule them all

 Explore data interactively using Spark
Shell / PySpark to identify problems

 Use same code in Spark stand-alone
programs to identify problems in
production logs

 Use similar code in Spark Streaming to
identify problems in live log streams

$./spark-shell
scala> val file = sc.hadoopFile(“smallLogs”)
...
scala> val filtered = file.filter(_.contains(“ERROR”))
...
scala> val mapped = file.map(...)
...

object ProcessProductionData {
 def main(args: Array[String]) {
 val sc = new SparkContext(...)
 val file = sc.hadoopFile(“productionLogs”)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

object ProcessLiveStream {
 def main(args: Array[String]) {
 val sc = new StreamingContext(...)
 val stream = sc.kafkaStream(...)
 val filtered = file.filter(_.contains(“ERROR”))
 val mapped = file.map(...)
 ...
 }
}

Ad-hoc
Queries

Batch
Processing

Stream
Processing Spark

+
Shark

+
Spark

Streaming

Alpha Release with Spark 0.7

 Integrated with Spark 0.7

- Import spark.streaming to get all the functionality

 Both Java and Scala API

 Give it a spin!

- Run locally or in a cluster

 Try it out in the hands-on tutorial later today

Summary

 Stream processing framework that is ...

- Scalable to large clusters

- Achieves second-scale latencies

- Has simple programming model

- Integrates with batch & interactive workloads

- Ensures efficient fault-tolerance in stateful computations

 For more information, checkout our paper: http://tinyurl.com/dstreams

http://tinyurl.com/dstreams

