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What is Spark Streaming? 
 Framework for large scale stream processing  

- Scales to 100s of nodes 

- Can achieve second scale latencies 

- Integrates with Spark’s batch and interactive processing 

- Provides a simple batch-like API for implementing complex algorithm 

- Can absorb live data streams from Kafka, Flume, ZeroMQ, etc. 

  

 

 

 



Motivation 

 Many important applications must process large streams of live data and provide 
results in near-real-time 

- Social network trends 

- Website statistics 

- Intrustion detection systems 

- etc. 

 

 Require large clusters to handle workloads 
 

 Require latencies of few seconds 

 



Need for a framework … 

… for building such complex stream processing applications 

 

 

 

But what are the requirements  

from such a framework? 



Requirements 

 Scalable to large clusters  

 Second-scale latencies 

 Simple programming model  



Case study: Conviva, Inc. 
 Real-time monitoring of online video metadata 

- HBO, ESPN, ABC, SyFy, … 

 

 

 
 

 Two processing stacks 

 

 

Custom-built distributed stream processing system 
• 1000s complex metrics on millions of video sessions 
• Requires many dozens of nodes for processing 

 

Hadoop backend for offline analysis 
• Generating daily and monthly reports 
• Similar computation as the streaming system  



Custom-built distributed stream processing system 
• 1000s complex metrics on millions of videos sessions 
• Requires many dozens of nodes for processing 

 

Hadoop backend for offline analysis 
• Generating daily and monthly reports 
• Similar computation as the streaming system  

Case study: XYZ, Inc.  
 Any company who wants to process live streaming data has this problem 

 Twice the effort to implement any new function 

 Twice the number of bugs to solve  

 Twice the headache 

 
 

 Two processing stacks 

 

 



Requirements 

 Scalable to large clusters  

 Second-scale latencies 

 Simple programming model  

 Integrated with batch & interactive processing 



Stateful Stream Processing 
 Traditional streaming systems have a event-

driven record-at-a-time processing model 

- Each node has mutable state 

- For each record, update state & send new 
records 

 

 State is lost if node dies! 

 

 Making stateful stream processing be fault-
tolerant is challenging 

mutable state 

node 1 

node 3 

input  
records 

node 2 

input  
records 
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Existing Streaming Systems 
 

 Storm 

-Replays record if not processed by a node 

-Processes each record at least once 

-May update mutable state twice! 

-Mutable state can be lost due to failure! 

 

 Trident – Use transactions to update state 

-Processes each record exactly once 

-Per state transaction updates slow 
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Requirements 

 Scalable to large clusters  

 Second-scale latencies 

 Simple programming model  

 Integrated with batch & interactive processing 

 Efficient fault-tolerance in stateful computations 



Spark Streaming 
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Discretized Stream Processing  

Run a streaming computation as a series of very 
small, deterministic batch jobs 
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Spark 

Spark 
Streaming 

batches of X seconds 

live data stream 

processed results 

 Chop up the live stream into batches of X seconds  

 Spark treats each batch of data as RDDs and 
processes them using RDD operations 

 Finally, the processed results of the RDD operations 
are returned in batches 



Discretized Stream Processing  

Run a streaming computation as a series of very 
small, deterministic batch jobs 
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Spark 

Spark 
Streaming 

batches of X seconds 

live data stream 

processed results 

 Batch sizes as low as ½ second, latency ~ 1 second 

 Potential for combining batch processing and 
streaming processing in the same system 



Example 1 – Get hashtags from Twitter  

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

 

 
DStream: a sequence of RDD representing a stream of data 

batch @ t+1 batch @ t batch @ t+2 

tweets DStream 

stored in memory as an RDD 
(immutable, distributed) 

Twitter Streaming API 



Example 1 – Get hashtags from Twitter  

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

 

 

flatMap flatMap flatMap 

…
 

transformation: modify data in one Dstream to create another DStream  new DStream 

new RDDs created for 
every batch  

batch @ t+1 batch @ t batch @ t+2 

tweets DStream 

hashTags Dstream 
[#cat, #dog, … ] 



Example 1 – Get hashtags from Twitter   

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFiles("hdfs://...") 

 

 

output operation: to push data to external storage 

flatMap flatMap flatMap 

save save save 

batch @ t+1 batch @ t batch @ t+2 

tweets DStream 

hashTags DStream 

every batch saved 
to HDFS 



Java Example 

Scala 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFiles("hdfs://...") 

 

 

Java 

JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> {  }) 

hashTags.saveAsHadoopFiles("hdfs://...") 
Function object to define the transformation 



Fault-tolerance 

 RDDs are remember the sequence of 
operations that created it from the 
original fault-tolerant input data 

 

 Batches of input data are replicated in 
memory of multiple worker nodes, 
therefore fault-tolerant 

 

 Data lost due to worker failure, can be 
recomputed from input data 

input data 
replicated 
in memory 

flatMap 

lost partitions 
recomputed on 
other workers 

tweets 
RDD 

hashTags 
RDD 



Key concepts 

 DStream – sequence of RDDs representing a stream of data 

- Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets 

 

 Transformations – modify data from on DStream to another 

- Standard RDD operations – map, countByValue, reduce, join, … 

- Stateful operations – window, countByValueAndWindow, … 

 

 Output Operations – send data to external entity 

- saveAsHadoopFiles – saves to HDFS 

- foreach – do anything with each batch of results 



Example 2 – Count the hashtags 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

val tagCounts = hashTags.countByValue() 

 

flatMap 

map 

reduceByKey 

flatMap 

map 

reduceByKey 

…
 

flatMap 

map 

reduceByKey 

batch @ t+1 batch @ t batch @ t+2 

hashTags 

tweets 

tagCounts 
[(#cat, 10), (#dog, 25), ... ] 



Example 3 – Count the hashtags over last 10 mins 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue() 

 

sliding window 
operation 

window length sliding interval 



tagCounts 

Example 3 – Counting the hashtags over last 10 mins 

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue() 

 

hashTags 

t-1 t t+1 t+2 t+3 

sliding window 

countByValue 

count over all 
the data in the 

window 



? 

Smart window-based countByValue 

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1)) 

 

 

   
hashTags 

t-1 t t+1 t+2 t+3 

+ 

+ 
– 

countByValue 
add the counts 
from the new 
batch in the 

window 
subtract the 
counts from 
batch before 
the window 

tagCounts 



Smart window-based reduce 

 Technique to incrementally compute count generalizes to many reduce operations 

- Need a function to “inverse reduce” (“subtract” for counting) 

 

 Could have implemented counting as: 

 hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), …) 
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Demo 



Fault-tolerant Stateful Processing 

All intermediate data are RDDs, hence can be recomputed if lost 

 

 

   
hashTags 

t-1 t t+1 t+2 t+3 

tagCounts 



Fault-tolerant Stateful Processing 

 State data not lost even if a worker node dies 

- Does not change the value of your result  

 

 Exactly once semantics to all transformations 

- No double counting! 
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Other Interesting Operations  

 Maintaining arbitrary state, track sessions 

- Maintain per-user mood as state, and update it with his/her tweets 

  tweets.updateStateByKey(tweet => updateMood(tweet)) 

 

 Do arbitrary Spark RDD computation within DStream 

- Join incoming tweets with a spam file to filter out bad tweets 

 tweets.transform(tweetsRDD => { 

  tweetsRDD.join(spamHDFSFile).filter(...) 

}) 

 



Performance 

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latency 

- Tested with 100 streams of data on 100 EC2 instances with 4 cores each 
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Comparison with Storm and S4 

Higher throughput than Storm 

 Spark Streaming: 670k records/second/node 

 Storm: 115k records/second/node 

 Apache S4: 7.5k records/second/node 
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Fast Fault Recovery 

Recovers from faults/stragglers within 1 sec 
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Real Applications: Conviva 

Real-time monitoring of video metadata 
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• Achieved 1-2 second latency 

• Millions of video sessions processed  

• Scales linearly with cluster size 

 

 

 



Real Applications: Mobile Millennium Project 

Traffic transit time estimation using online 
machine learning on GPS observations 
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# Nodes in Cluster 

• Markov chain Monte Carlo simulations on GPS 
observations 

• Very CPU intensive, requires dozens of 
machines for useful computation 

• Scales linearly with cluster size 

 

 



Vision - one stack to rule them all 

Ad-hoc 
Queries 

Batch 
Processing 

Stream 
Processing Spark 

+ 
Shark 

+ 
Spark  

Streaming 



Spark program vs Spark Streaming program 

Spark Streaming program on Twitter stream 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFiles("hdfs://...") 

 

 

Spark program on Twitter log file 

val tweets = sc.hadoopFile("hdfs://...") 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFile("hdfs://...") 

 



Vision - one stack to rule them all 

 Explore data interactively using Spark 
Shell / PySpark to identify problems 

 

 Use same code in Spark stand-alone 
programs to identify problems in 
production logs 

 

 Use similar code in Spark Streaming to 
identify problems in live log streams 

$ ./spark-shell 
scala> val file = sc.hadoopFile(“smallLogs”) 
... 
scala> val filtered = file.filter(_.contains(“ERROR”)) 
... 
scala> val mapped = file.map(...) 
... 
 

object ProcessProductionData { 
  def main(args: Array[String]) { 
    val sc = new SparkContext(...) 
    val file = sc.hadoopFile(“productionLogs”) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 

object ProcessLiveStream { 
  def main(args: Array[String]) { 
    val sc = new StreamingContext(...) 
    val stream = sc.kafkaStream(...) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 



Vision - one stack to rule them all 

 Explore data interactively using Spark 
Shell / PySpark to identify problems 

 

 Use same code in Spark stand-alone 
programs to identify problems in 
production logs 

 

 Use similar code in Spark Streaming to 
identify problems in live log streams 

$ ./spark-shell 
scala> val file = sc.hadoopFile(“smallLogs”) 
... 
scala> val filtered = file.filter(_.contains(“ERROR”)) 
... 
scala> val mapped = file.map(...) 
... 
 

object ProcessProductionData { 
  def main(args: Array[String]) { 
    val sc = new SparkContext(...) 
    val file = sc.hadoopFile(“productionLogs”) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 

object ProcessLiveStream { 
  def main(args: Array[String]) { 
    val sc = new StreamingContext(...) 
    val stream = sc.kafkaStream(...) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 

Ad-hoc 
Queries 

Batch 
Processing 

Stream 
Processing Spark 

+ 
Shark 

+ 
Spark  

Streaming 



Alpha Release with Spark 0.7 

 Integrated with Spark 0.7 

- Import spark.streaming to get all the functionality 

 

 Both Java and Scala API 

 

 Give it a spin!  

- Run locally or in a cluster 

 

 Try it out in the hands-on tutorial later today 



Summary 

 Stream processing framework that is ... 

- Scalable to large clusters  

- Achieves second-scale latencies 

- Has simple programming model  

- Integrates with batch & interactive workloads 

- Ensures efficient fault-tolerance in stateful computations 

 

 For more information, checkout our paper: http://tinyurl.com/dstreams 

 

 

http://tinyurl.com/dstreams

