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What is Spark Streaming? 
 Framework for large scale stream processing  

- Scales to 100s of nodes 

- Can achieve second scale latencies 

- Integrates with Spark’s batch and interactive processing 

- Provides a simple batch-like API for implementing complex algorithm 

- Can absorb live data streams from Kafka, Flume, ZeroMQ, etc. 

  

 

 

 



Motivation 

 Many important applications must process large streams of live data and provide 
results in near-real-time 

- Social network trends 

- Website statistics 

- Intrustion detection systems 

- etc. 

 

 Require large clusters to handle workloads 
 

 Require latencies of few seconds 

 



Need for a framework … 

… for building such complex stream processing applications 

 

 

 

But what are the requirements  

from such a framework? 



Requirements 

 Scalable to large clusters  

 Second-scale latencies 

 Simple programming model  



Case study: Conviva, Inc. 
 Real-time monitoring of online video metadata 

- HBO, ESPN, ABC, SyFy, … 

 

 

 
 

 Two processing stacks 

 

 

Custom-built distributed stream processing system 
• 1000s complex metrics on millions of video sessions 
• Requires many dozens of nodes for processing 

 

Hadoop backend for offline analysis 
• Generating daily and monthly reports 
• Similar computation as the streaming system  



Custom-built distributed stream processing system 
• 1000s complex metrics on millions of videos sessions 
• Requires many dozens of nodes for processing 

 

Hadoop backend for offline analysis 
• Generating daily and monthly reports 
• Similar computation as the streaming system  

Case study: XYZ, Inc.  
 Any company who wants to process live streaming data has this problem 

 Twice the effort to implement any new function 

 Twice the number of bugs to solve  

 Twice the headache 

 
 

 Two processing stacks 

 

 



Requirements 

 Scalable to large clusters  

 Second-scale latencies 

 Simple programming model  

 Integrated with batch & interactive processing 



Stateful Stream Processing 
 Traditional streaming systems have a event-

driven record-at-a-time processing model 

- Each node has mutable state 

- For each record, update state & send new 
records 

 

 State is lost if node dies! 

 

 Making stateful stream processing be fault-
tolerant is challenging 

mutable state 

node 1 

node 3 

input  
records 

node 2 

input  
records 
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Existing Streaming Systems 
 

 Storm 

-Replays record if not processed by a node 

-Processes each record at least once 

-May update mutable state twice! 

-Mutable state can be lost due to failure! 

 

 Trident – Use transactions to update state 

-Processes each record exactly once 

-Per state transaction updates slow 
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Requirements 

 Scalable to large clusters  

 Second-scale latencies 

 Simple programming model  

 Integrated with batch & interactive processing 

 Efficient fault-tolerance in stateful computations 



Spark Streaming 

12 



Discretized Stream Processing  

Run a streaming computation as a series of very 
small, deterministic batch jobs 
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Spark 

Spark 
Streaming 

batches of X seconds 

live data stream 

processed results 

 Chop up the live stream into batches of X seconds  

 Spark treats each batch of data as RDDs and 
processes them using RDD operations 

 Finally, the processed results of the RDD operations 
are returned in batches 



Discretized Stream Processing  

Run a streaming computation as a series of very 
small, deterministic batch jobs 
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Spark 

Spark 
Streaming 

batches of X seconds 

live data stream 

processed results 

 Batch sizes as low as ½ second, latency ~ 1 second 

 Potential for combining batch processing and 
streaming processing in the same system 



Example 1 – Get hashtags from Twitter  

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

 

 
DStream: a sequence of RDD representing a stream of data 

batch @ t+1 batch @ t batch @ t+2 

tweets DStream 

stored in memory as an RDD 
(immutable, distributed) 

Twitter Streaming API 



Example 1 – Get hashtags from Twitter  

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

 

 

flatMap flatMap flatMap 

…
 

transformation: modify data in one Dstream to create another DStream  new DStream 

new RDDs created for 
every batch  

batch @ t+1 batch @ t batch @ t+2 

tweets DStream 

hashTags Dstream 
[#cat, #dog, … ] 



Example 1 – Get hashtags from Twitter   

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFiles("hdfs://...") 

 

 

output operation: to push data to external storage 

flatMap flatMap flatMap 

save save save 

batch @ t+1 batch @ t batch @ t+2 

tweets DStream 

hashTags DStream 

every batch saved 
to HDFS 



Java Example 

Scala 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFiles("hdfs://...") 

 

 

Java 

JavaDStream<Status> tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

JavaDstream<String> hashTags = tweets.flatMap(new Function<...> {  }) 

hashTags.saveAsHadoopFiles("hdfs://...") 
Function object to define the transformation 



Fault-tolerance 

 RDDs are remember the sequence of 
operations that created it from the 
original fault-tolerant input data 

 

 Batches of input data are replicated in 
memory of multiple worker nodes, 
therefore fault-tolerant 

 

 Data lost due to worker failure, can be 
recomputed from input data 

input data 
replicated 
in memory 

flatMap 

lost partitions 
recomputed on 
other workers 

tweets 
RDD 

hashTags 
RDD 



Key concepts 

 DStream – sequence of RDDs representing a stream of data 

- Twitter, HDFS, Kafka, Flume, ZeroMQ, Akka Actor, TCP sockets 

 

 Transformations – modify data from on DStream to another 

- Standard RDD operations – map, countByValue, reduce, join, … 

- Stateful operations – window, countByValueAndWindow, … 

 

 Output Operations – send data to external entity 

- saveAsHadoopFiles – saves to HDFS 

- foreach – do anything with each batch of results 



Example 2 – Count the hashtags 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

val tagCounts = hashTags.countByValue() 

 

flatMap 

map 

reduceByKey 

flatMap 

map 

reduceByKey 

…
 

flatMap 

map 

reduceByKey 

batch @ t+1 batch @ t batch @ t+2 

hashTags 

tweets 

tagCounts 
[(#cat, 10), (#dog, 25), ... ] 



Example 3 – Count the hashtags over last 10 mins 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue() 

 

sliding window 
operation 

window length sliding interval 



tagCounts 

Example 3 – Counting the hashtags over last 10 mins 

val tagCounts = hashTags.window(Minutes(10), Seconds(1)).countByValue() 

 

hashTags 

t-1 t t+1 t+2 t+3 

sliding window 

countByValue 

count over all 
the data in the 

window 



? 

Smart window-based countByValue 

val tagCounts = hashtags.countByValueAndWindow(Minutes(10), Seconds(1)) 

 

 

   
hashTags 

t-1 t t+1 t+2 t+3 

+ 

+ 
– 

countByValue 
add the counts 
from the new 
batch in the 

window 
subtract the 
counts from 
batch before 
the window 

tagCounts 



Smart window-based reduce 

 Technique to incrementally compute count generalizes to many reduce operations 

- Need a function to “inverse reduce” (“subtract” for counting) 

 

 Could have implemented counting as: 

 hashTags.reduceByKeyAndWindow(_ + _, _ - _, Minutes(1), …) 
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Demo 



Fault-tolerant Stateful Processing 

All intermediate data are RDDs, hence can be recomputed if lost 

 

 

   
hashTags 

t-1 t t+1 t+2 t+3 

tagCounts 



Fault-tolerant Stateful Processing 

 State data not lost even if a worker node dies 

- Does not change the value of your result  

 

 Exactly once semantics to all transformations 

- No double counting! 
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Other Interesting Operations  

 Maintaining arbitrary state, track sessions 

- Maintain per-user mood as state, and update it with his/her tweets 

  tweets.updateStateByKey(tweet => updateMood(tweet)) 

 

 Do arbitrary Spark RDD computation within DStream 

- Join incoming tweets with a spam file to filter out bad tweets 

 tweets.transform(tweetsRDD => { 

  tweetsRDD.join(spamHDFSFile).filter(...) 

}) 

 



Performance 

Can process 6 GB/sec (60M records/sec) of data on 100 nodes at sub-second latency 

- Tested with 100 streams of data on 100 EC2 instances with 4 cores each 
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Comparison with Storm and S4 

Higher throughput than Storm 

 Spark Streaming: 670k records/second/node 

 Storm: 115k records/second/node 

 Apache S4: 7.5k records/second/node 
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Fast Fault Recovery 

Recovers from faults/stragglers within 1 sec 
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Real Applications: Conviva 

Real-time monitoring of video metadata 
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# Nodes in Cluster 

• Achieved 1-2 second latency 

• Millions of video sessions processed  

• Scales linearly with cluster size 

 

 

 



Real Applications: Mobile Millennium Project 

Traffic transit time estimation using online 
machine learning on GPS observations 
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# Nodes in Cluster 

• Markov chain Monte Carlo simulations on GPS 
observations 

• Very CPU intensive, requires dozens of 
machines for useful computation 

• Scales linearly with cluster size 

 

 



Vision - one stack to rule them all 

Ad-hoc 
Queries 

Batch 
Processing 

Stream 
Processing Spark 

+ 
Shark 

+ 
Spark  

Streaming 



Spark program vs Spark Streaming program 

Spark Streaming program on Twitter stream 

val tweets = ssc.twitterStream(<Twitter username>, <Twitter password>) 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFiles("hdfs://...") 

 

 

Spark program on Twitter log file 

val tweets = sc.hadoopFile("hdfs://...") 

val hashTags = tweets.flatMap (status => getTags(status)) 

hashTags.saveAsHadoopFile("hdfs://...") 

 



Vision - one stack to rule them all 

 Explore data interactively using Spark 
Shell / PySpark to identify problems 

 

 Use same code in Spark stand-alone 
programs to identify problems in 
production logs 

 

 Use similar code in Spark Streaming to 
identify problems in live log streams 

$ ./spark-shell 
scala> val file = sc.hadoopFile(“smallLogs”) 
... 
scala> val filtered = file.filter(_.contains(“ERROR”)) 
... 
scala> val mapped = file.map(...) 
... 
 

object ProcessProductionData { 
  def main(args: Array[String]) { 
    val sc = new SparkContext(...) 
    val file = sc.hadoopFile(“productionLogs”) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 

object ProcessLiveStream { 
  def main(args: Array[String]) { 
    val sc = new StreamingContext(...) 
    val stream = sc.kafkaStream(...) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 



Vision - one stack to rule them all 

 Explore data interactively using Spark 
Shell / PySpark to identify problems 

 

 Use same code in Spark stand-alone 
programs to identify problems in 
production logs 

 

 Use similar code in Spark Streaming to 
identify problems in live log streams 

$ ./spark-shell 
scala> val file = sc.hadoopFile(“smallLogs”) 
... 
scala> val filtered = file.filter(_.contains(“ERROR”)) 
... 
scala> val mapped = file.map(...) 
... 
 

object ProcessProductionData { 
  def main(args: Array[String]) { 
    val sc = new SparkContext(...) 
    val file = sc.hadoopFile(“productionLogs”) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 

object ProcessLiveStream { 
  def main(args: Array[String]) { 
    val sc = new StreamingContext(...) 
    val stream = sc.kafkaStream(...) 
    val filtered = file.filter(_.contains(“ERROR”)) 
    val mapped = file.map(...) 
    ... 
  } 
} 

Ad-hoc 
Queries 

Batch 
Processing 

Stream 
Processing Spark 

+ 
Shark 

+ 
Spark  

Streaming 



Alpha Release with Spark 0.7 

 Integrated with Spark 0.7 

- Import spark.streaming to get all the functionality 

 

 Both Java and Scala API 

 

 Give it a spin!  

- Run locally or in a cluster 

 

 Try it out in the hands-on tutorial later today 



Summary 

 Stream processing framework that is ... 

- Scalable to large clusters  

- Achieves second-scale latencies 

- Has simple programming model  

- Integrates with batch & interactive workloads 

- Ensures efficient fault-tolerance in stateful computations 

 

 For more information, checkout our paper: http://tinyurl.com/dstreams 

 

 

http://tinyurl.com/dstreams

